Serotonin and brain development.
نویسندگان
چکیده
The role of the serotonergic system in the neuroplastic events that create, repair, and degenerate the brain has been explored. Synaptic plasticity occurs throughout life and is critical during brain development. Evidence from biochemical, pharmacological, and clinical studies demonstrates the huge importance of an intact serotonergic system for normal central nervous system (CNS)function. Serotonin acts as a growth factor during embryogenesis, and serotonin receptor activity forms a crucial part of the cascade of events leading to changes in brain structure. The serotonergic system interacts with brain-derived neurotrophic factor (BDNF), S100beta, and other chemical messengers, in addition to ts cross talk with the GABAergic, glutamatergic, and dopaminergic neurotransmitter systems. Disruption of these processes may contribute to CNS disorders that have been associated with impaired development. Furthermore, many psychiatric drugs alter serotonergic activity and have been shown to create changes in brain structure with long-term treatment. However, the mechanisms for their therapeutic efficacy are still unclear. Treatments for psychiatric illness are usually chronic and alleviate psychiatric symptoms, rather than cure these diseases. Therefore, greater exploration of the serotonin system during brain development and growth could lead to real progress in the discovery of treatments for mental disorders.
منابع مشابه
Effect of Prenatal Stress and Serotonin Depletion on Postnatal Serotonin Metabolism in Wistar Rats
Prenatal stress in rats results in structural, physiological and behavioral alterations that persist in adulthood. Serotonin (5-HT) is an important neurotransmitter known to be involved in these prenatal stress-induced behavioral alterations. The aim of the study was to investigate the effects of interrupted synthesis of 5-HT and immobilization stress during different gestational period on brai...
متن کاملInteraction between Intestinal Microbiota and Serotonin Metabolism
Gut microbiota regulates the production of signaling molecules, such as serotonin or 5-Hydroxytryptamine: 5-HT in the host. Serotonin is a biogenic amine that acts as a neurotransmitter in the gut and brain. There is a perfect interaction between human gastrointestinal microbiota and the serotonin system. The gut microbiota plays an important role in the serotonin signaling pathways through the...
متن کاملDepletion of Serotonin Synthesis with p-CPA Pretreatment Alters EEG in Urethane Anesthetized Rats under Whole Body Hyperthermia
Serotonin is believed as an important factor in brain function. The role of serotonin in cerebral psycho-patho-physiology has already been well established. However, the function of serotonin antagonist in anesthetized subjects under hyperthermia has not been studied properly. Methods: Experiments were performed in three groups of urethane-anesthetized rats, such as: (i) control group, (ii) wh...
متن کاملEFFECTS OF CATECHOLAMINES ON DOPAMINE AND SEROTONIN SYNTHESIS IN RAT BRAIN STRIATAL SYNAPTOSOMES: THE ROLE OF PRESYNAPTIC RECEPTORS AND THE SYNAPTOSOMAL REUPTAKE MECHANISM.
The regulation of dopamine and serotonin synthesis in rat brain striatal synaptosomes has been studied using HPLC methods. Noradrenaline was shown to markedly inhibit both the synthesis of dopamine and serotonin. The response of the synaptosomes to the concentrations of noradrenaline appeared to be biphasic, a very effective inhibition occurring at low concentrations (1-5 µm) and a relativ...
متن کاملThe role of spinal serotonergic system in morphine withdrawal syndrome in the rat
Previous pharmacological studies have implicated serotonergic brain systems in opiate withdrawal syndrome. Increased brain 5-HT release is associated with the development of physical dependence to morphine. Specific serotonin reuptake inhibitors, such as fluvoxamine and sertraline reduce the severity of naloxone precipitated opioid withdrawal syndrome. Other studies have shown that 5-HT system ...
متن کاملگیرنده های سروتونین - به کجا می روند؟
Thirty-three Years ago, Gaddum and Picarelli classified the serotonin receptors in the guinea pig ileum into D and M types based on the activity of dibenzyline (D) and morphine (M) to block contractions of intestinal smooth muscle caused by serotonin. The subsequent location of specific ligand binding sites for serotonin in the brain has led to the identification of ten serotonin receptor sub-t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International review of neurobiology
دوره 59 شماره
صفحات -
تاریخ انتشار 2004